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Vertical density matrix algorithm: A higher-dimensional numerical renormalization scheme based
on the tensor product state ansatz
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We present a new algorithm to calculate the thermodynamic quantities of three-dimensional~3D! classical
statistical systems, based on the ideas of the tensor product state and the density matrix renormalization group.
We represent the maximum-eigenvalue eigenstate of the transfer matrix as the product of local tensors that are
iteratively optimized by the use of the ‘‘vertical density matrix’’ formed by cutting the system along the
transfer direction. This algorithm, which we callvertical density matrix algorithm~VDMA !, is successfully
applied to the 3D Ising model. Using the Suzuki-Trotter transformation, we can also apply the VDMA to 2D
quantum systems, which we demonstrate for the 2D transverse field Ising model.
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I. INTRODUCTION

Since the density matrix renormalization group~DMRG!
method was invented by White@1#, the method has bee
applied to various problems in one-dimensional~1D! quan-
tum systems and 2D classical systems@2#. Such a great suc
cess of the DMRG has been stimulating us to extend
algorithm to the one that can handle higher-dimensional s
tems, principally 2D quantum systems and 3D classical s
tems@3–6#.

We should recall that, in the DMRG, the matrix-produ
structure of the wave function of the target states~usually the
ground state or the maximum-eigenvalue eigenstate! is es-
sential@7#. From this point of view, the tensor-product sta
~TPS!, which is a natural higher-dimensional generalizati
of the matrix product state, should play a key role in t
‘‘higher-dimensional DMRG.’’ A simple but nontrivial ex-
ample of the TPS is the ground state of 2D valence-bo
solid ~VBS!-type quantum spin systems, where the wa
function is expressed as a product of local finite-dimensio
tensors with all the tensor indices being contracted@8#. As
for 3D classical statistical systems, the maximum-eigenva
eigenstate of the layer-to-layer transfer matrix of the 3D cl
sical system can exactly be represented as the TPS, i
allow the tensor dimension to be infinite. We should no
that we can reduce the calculation of the expectation valu
the TPS to a statistical average in a lower-dimensional c
sical system; a (D11)-dimensional classical ~or
D-dimensional quantum! problem reduces to a
D-dimensional classical statistical problem@9#. In fact, the
properties of the 2D VBS model have been studied in te
of a 2D vertex model associated with the TPS wave funct
@9,10#.

When developing the TPS formulation, the most imp
tant step is the determination~optimization! of the local ten-
sor in the TPS. In Refs.@11,12#, direct variational formula-
tions are employed for the optimization of the local tenso
As compared with these ‘‘direct’’ methods, our algorith
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given in the present paper for 3D classical systems is m
like the original DMRG. The local tensor is updated by t
‘‘block-spin basis transformation’’ along the vertical dire
tion. Since this transformation is constructed in terms of
density matrix made along the ‘‘vertical direction’’~transfer
direction of the transfer matrix!, we call this algorithm the
vertical density matrix algorithm~VDMA !. We apply the
VDMA to the 3D Ising model and discuss its efficiency. W
also report the application of the VDMA to the 2D transver
field Ising model, with help of the Suzuki-Trotter transfo
mation @13#.

This paper is organized as follows. In Sec. II, we brie
explain the VDMA for 3D classical spin systems taking t
3D Ising model as an example. In Sec. III we show t
numerical result for the 3D Ising model and the 2D tran
verse field Ising model. The last section is devoted to
conclusion.

II. METHOD

Let us consider the 3D Ising model on the simple cu
lattice of the sizeN3N32L in X, Y, andZ directions. Sup-
pose thatL andN are sufficiently large and the neighborin
Ising spins s and s8 have ferromagnetic interactio
2Jss8. Then the Boltzmann weight for the unit cube
written as

WS s̄ i j s̄ i 8 j s̄ i 8 j 8 s̄ i j 8

s i j s i 8 j s i 8 j 8 s i j 8
D [expF2

K

2
~s i j s i 8 j1s i 8 js i 8 j 8

1s i 8 j 8s i j 81s i j 8s i j 1s̄ i j s̄ i 8 j

1s̄ i 8 j s̄ i 8 j 81s̄ i 8 j 8s̄ i j 8

1s̄ i j 8s̄ i j 1s i j s̄ i j 1s i 8 j s̄ i 8 j

1s i 8 j 8s̄ i 8 j 81s i j 8s̄ i j 8!G , ~1!
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wherei 85 i 11, j 85 j 11, andK5J/T. The locations of the
spin variables are shown in Fig. 1~a!.

For the book keeping, let us introduce here some no
tions for spin variables. Write the configuration of the fo
spins surrounding a plaquette in theXY plane as

si j 5~s i j s i 8 js i 8 j 8s i j 8!, ~2!

where the position of the plaquette can be labeled by
index i j . Then the Boltzmann weight is simply written a

W(si j

s̄i j ). Also for a spin layer in theXY plane, we denote the

configuration of theN3N spins as

@V#[F s11 . . . s1N

A � A

sN1 . . . sNN

G . ~3!

Using these notations, the transfer matrixT from a layer@V#

to the next layer@V̄# is written as

T@V̄uV#5 )
i 1 j 5even

WS s̄i j

si j
D . ~4!

In the product of Eq.~4!, the spin variables are shared by t
adjacent cubes in the diagonal direction and thus the Bo
mann weights form the checkerboard pattern in theXY plane
@see Fig. 1~b!#.

Our goal is to evaluate the maximum eigenvaluelmax of
the transfer matrixT and the corresponding eigenvect

FIG. 1. ~a! The Boltzmann weight of a unit cell and~b! the

transfer matrixT@V̄uV# (N54).
01670
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ucmax&, using the TPS representation of the eigenvector.
order to analyze the TPS structure ofucmax&, let us consider
the power method briefly, which is the simplest but power
technique to calculatelmax and ucmax&. Define the vector
ucL& as

ucL&5TLuc0&, ~5!

where uc0& is an ‘‘initial’’ vector that is not orthogonal to
ucmax&. Then the maximum-eigenvalue eigenvectorucmax& is
obtained as

ucmax&5const3 lim
L→`

ucL&. ~6!

In Fig. 2, we show the graphical representation ofucL&,
where we can see the structure ofucL& more clearly. As is
seen in this figure, theL unit cubes are piling vertically up to
the surface, and then the product of the vertically arran
Boltzmann weights can be regarded as a local tensor;
define the local tensorAL at thei j plaquette as

ALS si j
L

ji j
L D 5WS si j

L

si j
L21D WS si j

L21

si j
L22D •••WS si j

1

si j
0 D , ~7!

where si j
L is the spin configuration at thei j plaquette

on the ‘‘surface layer,’’ and the auxiliary variableji j
L

[(si j
0 si j

1 si j
2
•••si j

L21) denotes the configuration for th
spins under the surface. Using the local tensors defi
above,ucL& is represented as a TPS,

ucL&5(
[ jL]

)
i 1 j 5even

ALS si j
L

ji j
L D , ~8!

where we assume that details ofuc0& can be ignored for
sufficiently largeL. Taking the limit L→`, we obtain the
maximum-eigenvalue eigenvectorucmax&, which is now rep-
resented as the product of the local tensorA` .

From the practical view point of the usual power metho
the eigenvector is improved with the relationucL11&

FIG. 2. The graphical representation of the vectorucL&. Below
the i j plaquette, we find that theL unit cubes are piling up.
5-2
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5TucL& iteratively. In the framework of the TPS, this pow
method is reformulated as the recursion relation for the lo
tensor,

AL11S si j
L11

ji j
L11 D 5WS si j

L11

si j
L D ALS si j

L

ji j
L D , ~9!

with which we can carry out the iterative calculation, un
AL gives a good approximation ofA` . However it is gener-
ally difficult to store the tensorAL in the computer memory
for a sufficiently largeL because the number of states ofj i j

L ,
which is denoted asM in the following, diverges exponen
tially as L increases.

In order to restrict the number of the auxiliary variab
we now import the idea of the DMRG into the TPS@1#. The
essence of the DMRG is that the increased number of st
for j i j

L11 can be reduced, by using the ‘‘projection operato
generated from the ‘‘density matrix.’’ In the present case,
appropriate density matrix should be constructed for the s
variables (s i j

L ,j i j
L ) in the vertical direction~we thus call this

density matrix ‘‘the vertical density matrix’’! @14#. Introduc-
ing the ‘‘transposed’’ local tensor,

ĀS hi j

si j
D 5WS s̄i j

0

s̄i j
1 D WS s̄i j

1

s̄i j
2 D •••WS s̄i j

L21

si j
D , ~10!

the explicit form of the vertical density matrix is defined
~see Fig. 3!,

rkl~skl8 jkl8 uskljkl!5 (
[ s],[ j],[ h]

8 F )
i 1 j 5even

8 ĀS hi j

si j
DAS si j

ji j
D G

3ĀS hk9 l 9

šk9 l 9
D AS šk9 l 9

ǰk9 l 9
D

3ĀS hkl

skl
DAS skl

jkl
D , ~11!

FIG. 3. The vertical density matrixrkl(skl8 jkl8 uskljkl).
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where(8 denotes the configuration sum for the all spin va
ables exceptskl8 , jkl8 , skl , andjkl . )8 means the produc
for the site (i , j ) except (i , j )5(k,l ) and (k9,l 9)[(k21,l
21). In Eq. ~11!, we have also used the notation for th
‘‘checked spins’’:

S šk9 l 9

ǰk9 l 9
D [S sk9 l 9 skl9 skl8 sk9 l

jk9 l 9 jkl9 jkl8 jk9 l
D .

Further, we have omitted the sub~super!script L as it is ap-
parent.

For the case of the isotropic 3D Ising model, the vertic
density matrixrkl is independent of the site indexkl in the
thermodynamic limit. Thus we writerkl simply asr here.
Moreover it should be noted that, for the isotropic case,
local tensorsA and Ā satisfies the relation

ĀS h i j h i 8 j h i 8 j 8 h i j 8

s i j s i 8 j s i 8 j 8 s i j 8
D 5AS s i j s i j 8 s i 8 j 8 s i 8 j

h i j h i j 8 h i 8 j 8 h i 8 j
D .

~12!

Following the spirit of the DMRG, we diagonalizer to
have the eigenvalueswj̃ in the decreasing orderw1>w2>
•••>w2M(>0),

(
sj

r~s8j8usj!U~sju j̃ !5U~s8j8u j̃ !wj̃ , ~13!

where U(sju j̃) is the eigenvector forwj̃ . By taking
U(sju j̃) with j̃P1, . . . ,M , we construct the projection op
eratorU, which is a 2M3M rectangular matrix. Operating
U on the spin variables on each ‘‘edge’’ ofA, we then make
the renormalized local tensorÃ,

ÃS ti j

j̃i j
D [ (

si j ,ji j

WS t i j t i 8 j t i 8 j 8 t i j 8

s i j s i 8 j s i 8 j 8 s i j 8
D

3AS s i j s i 8 j s i 8 j 8 s i j 8

j i j j i 8 j j i 8 j 8 j i j 8
DU~s i j j i j u j̃ i j !

3U~s i 8 jj i 8 j u j̃ i 8 j !U~s i 8 j 8j i 8 j 8u j̃ i 8 j 8!

3U~s i j 8j i j 8u j̃ i j 8!. ~14!

Using Eqs.~9! and~14! recursively, we can now calculat
the effective local tensorÃ` . However we encounter anothe
problem in this process; it is also a numerically heavy pro
lem to compute the vertical density matrix with Eq.~11!,
where a huge memory space to store the spin variable
required in carrying out the summation.

Let us next explain how to overcome the difficulty
calculating the vertical density matrix. The key idea is th
we can consider Eq.~11! as a configuration sum for a kind o
2D classical spin system with a point defect. To see it,
define here a new tensor
5-3
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GS hi j

si j

ji j

D [ĀS hi j

si j
DAS si j

ji j
D , ~15!

which is graphically represented in Fig. 4.
Regarding the spin variables along thez axis as a 2M2

state single spin,

si j 5S h i j

s i j

j i j

D , ~16!

we can see thatG(si j )5G(si j si 8 j si 8 j 8si j 8) becomes the Bolt-
zmann weight for the 2D effective classical model. Then
vertical density matrixr can be expressed as the dens
matrix for the spin variables at the center of the 2D class
model,

rkl~skl8 jkl8 uskljkl!5 (
[ s],[ j],[ h]

8 F )
i 1 j 5even

8 G~si j !G
3G~ šk9 l 9!G~skl! ~17!

where the meaning of the prime at the summation and
product is the same as Eq.~11!, and the ‘‘checked spin’’ is
given by

šk9 l 95S hk9 l 9

šk9 l 9

ǰk9 l 9

D .

We calculate each component of the vertical density m
trix ~17! as a partition function of the 2D classical syste
with the point defect that consists of the four fixed spinsskl8 ,
jkl8 , skl , andjkl sitting at the center of the system. To th
end we apply the corner transfer matrix renormalizat
group~CTMRG! @15#, which is quite efficient for 2D classi
cal statistical systems. Particularly we note that the CTM
works well for a problem with a point defect.

Thus we have obtained a closed algorithm to calculate
local tensor A with Eqs. ~9! and ~14!, assisted by the
CTMRG for the 2D effective classical model. We summar
the numerical procedure as follows.

~a! For the free-boundary condition in theZ direction,
define the initial local tensorA1 as

FIG. 4. The effective Boltzmann weightG.
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A1S si j

si j8
D 5WS si j

si j8
D . ~18!

For the Ferro boundary condition, defineA1 as

A1S si j

si j8
D 5WS si j

si j8
D 3WS si j8

11
D , ~19!

where (11) means that the four Ising spins are aligned u
ward.

~b! Define the effective Boltzmann weight of the 2D cla
sical spin system with Eq.~15!.

~c! Perform the CTMRG calculation for the 2D effectiv
classical spin system with the Boltzmann weightG and ob-
tain the vertical density matrixr.

~d! Diagonalizer and construct the projection operatorU.
~e! Renormalize the local tensorA with Eq. ~14!.
~f! Return to~b! until the local tensorA is converged.
In this VDMA calculation, the accuracy is determined b

the number of retained basisM for the auxiliary variablesj
and h, and m for the CTMRG calculation in 2D classica
system. We can check the convergence of the compu
quantities with respect toM andm.

III. RESULTS

A. The 3D Ising model

Figure 5 shows the spontaneous magnetization^s& calcu-
lated by using the VDMA. For comparison we also show t
results of the 3D version of the Kramers-Wannier appro
mation @11# and Talapov and Blo¨te’s Monte Carlo results
@16#. After 20–50 iterations both in the vertical and horizo
tal directions, we have successfully reached the fixed p
for eachM andm. We find good convergence with respect
m in the whole temperature range and observe that the c
vergence with respect toM is also sufficient in the off-critical
region. Near the critical point, however, the magnetizat
becomes smaller asM is increased, implying that largeM is
needed for the calculation in the critical region.

B. The 2D transverse field Ising model

Let us next consider the VDMA for the 2D transver
field Ising ~TFI! model on the square lattice, which is one

FIG. 5. The spontaneous magnetization of the 3D Ising mod
5-4
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the fundamental quantum spin models in 2D. The Ham
tonian of the 2D TFI model is given by

H52J(
^ i , j &

s i
zs j

z2G(
i

s i
x , ~20!

where J(.0) is the ferromagnetic coupling constant,s i
a

(a5x, y, or z) are the Pauli matrices, and^ i , j & denotes the
nearest-neighbor pairs on the square lattice. The transv
field G induces the quantum fluctuation into the system.
zero temperature, the TFI model exhibits the quantum ph
transition atG5Gc , below which the spontaneous magne
zation ^s& behaves aŝs&;(Gc2G)b. The critical fieldGc
and the critical exponentb have been estimated asGc
53.06 andb50.31 by the quantum Monte Carlo~QMC!
simulation@17#. In the following we consider the VDMA for
the 2D TFI model at zero temperature and show the res
of ^s&.

As was described in the previous section, the VDMA
formulated for the 3D classical systems. In order to apply
VDMA to the 2D TFI model, we map the model to the 3
anisotropic Ising model by using the Suzuki-Trotter transf
mation@13#. The partition functionZ of the 2D TFI model is
obtained as the limit of the 3D anisotropic Ising model,

Z5 lim
L→`

Tr expFKh(
t51

L

(
^ i , j &

s i ,ts j ,t1Kv(
t51

L

(
i

s i ,ts i ,t11G ,

~21!

wheres i ,t is the Ising variable at the positioni and imagi-
nary timet. The effective couplingsKh andKv in Eq. ~21!
are given by

Kh5eJ, ~22!

Kv52
1

2
ln@ tanh~eG!#, ~23!

e51/~TL!, ~24!

where the subscriptsh and v denote the horizontal (XY)
direction and the vertical~Trotter! direction, respectively.
We can perform the VDMA calculation for this anisotrop
3D Ising model.

We should make a comment on the boundary condit
before proceeding to details. As was seen in the previ
section, the open boundary condition is assumed in
VDMA. However, the periodic boundary condition is im
posed along the Trotter direction in Eq.~21!. As far as the
zero-temperature properties are concerned, the boun
condition is inessential due to the double limitT→0 andL
→0, allowing us to apply the VDMA to Eq.~21! @18#.

For a fixed value ofe, we calculate the magnetizatio
^s(e)& with the VDMA for the infinite volume. After obtain-
ing ^s(e)& for variouse, we take thee→0 limit by extrapo-
lation. In the actual calculation, we have observed the
lowing e dependence

^s~e!&5^s~0!&1const3e2, ~25!

which we adopt as the extrapolation formula.
01670
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In Fig. 6, we show thês& vs e2 plots atG53.0 as an
example, which are obtained with the VDMA of the numbe
of retained bases (M ,m)5(2,8) and (3,18), where the con
vergence with respect tom is rapid. In the regionG.3.2,
^s& converges to 0 smoothly.

In Fig. 7, we show thês&-G curve and the results of th
series expansion for comparison@19#. For G,2.6, the
VDMA results are sufficiently reliable, where the number
the VDMA iterations is of the order of 10 in both Trotter an
horizontal directions and the convergency aboutm andM is
also good. In the small field region (G,2.0) then, we can
see the good agreement of the VDMA results with the se
expansion. In the vicinity of the critical point, however, th
calculated magnetization exhibitsM dependence. In addition
we note that several thousands of iterations are require
the Trotter direction, whereas at most 50 iterations
needed in the horizontal direction. The roughly estima
critical field from the VDMA calculation is about 3.2, whic
is 4% larger than the QMC one.

IV. CONCLUSION

In this paper we have constructed a higher-dimensio
numerical renormalization algorithm that utilizes the natu
tensor-product form of the maximum-eigenvalue eigens
ucmax& of the transfer matrix. In our algorithm, calle

FIG. 6. The extrapolation of the magnetization atG53.0. The
solid lines are linear fits of data.

FIG. 7. e50 limit of ^s&-G curve atT50. The arrow shows the
critical field obtained by the QMC simulation@17#.
5-5
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VDMA, the local tensor formingucmax& is iteratively updated
using the vertical density matrix. We have successfully
plied the VDMA to the 3D Ising model. The VDMA can als
be applied to 2D quantum systems using the Suzuki-Tro
transformation to 3D classical statistical systems, which
have demonstrated for the 2D transverse field Ising mo
Application of the VDMA to other 2D quantum systems su
as the Heisenberg model is an important subject of stu
which we are now undertaking.
od
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